Local Gaussian Process Regression for Real Time Online Model Learning

نویسندگان

  • Duy Nguyen-Tuong
  • Matthias W. Seeger
  • Jan Peters
چکیده

Learning in real-time applications, e.g., online approximation of the inverse dynamics model for model-based robot control, requires fast online regression techniques. Inspired by local learning, we propose a method to speed up standard Gaussian process regression (GPR) with local GP models (LGP). The training data is partitioned in local regions, for each an individual GP model is trained. The prediction for a query point is performed by weighted estimation using nearby local models. Unlike other GP approximations, such as mixtures of experts, we use a distance based measure for partitioning of the data and weighted prediction. The proposed method achieves online learning and prediction in real-time. Comparisons with other non-parametric regression methods show that LGP has higher accuracy than LWPR and close to the performance of standard GPR and ν-SVR.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local Gaussian Process Regression for Real Time Online Model Learning and Control

Learning in real-time applications, e.g., online approximation of the inverse dynamics model for model-based robot control, requires fast online regression techniques. Inspired by local learning, we propose a method to speed up standard Gaussian process regression (GPR) with local GP models (LGP). The training data is partitioned in local regions, for each an individual GP model is trained. The...

متن کامل

Real-Time Local GP Model Learning

For many applications in robotics, accurate dynamics models are essential. However, in some applications, e.g., in model-based tracking control, precise dynamics models cannot be obtained analytically for sufficiently complex robot systems. In such cases, machine learning offers a promising alternative for approximating the robot dynamics using measured data. However, standard regression method...

متن کامل

Incremental online sparsification for model learning in real-time robot control

For many applications such as compliant, accurate robot tracking control, dynamics models learned from data can help to achieve both compliant control performance as well as high tracking quality. Online learning of these dynamics models allows the robot controller to adapt itself to changes in the dynamics (e.g., due to time-variant nonlinearities or unforeseen loads). However, online learning...

متن کامل

Model Learning with Local Gaussian Process Regression

Precise models of the robot inverse dynamics allow the design of significantly more accurate, energy-efficient and more compliant robot control. However, in some cases the accuracy of rigidbody models does not suffice for sound control performance due to unmodeled nonlinearities arising from hydraulic cable dynamics, complex friction or actuator dynamics. In such cases, estimating the inverse d...

متن کامل

Incremental Sparsification for Real-time Online Model Learning

Online model learning in real-time is required by many applications such as in robot tracking control. It poses a difficult problem, as fast and incremental online regression with large data sets is the essential component which cannot be achieved by straightforward usage of off-the-shelf machine learning methods (such as Gaussian process regression or support vector regression). In this paper,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008